C. U. SHAH UNIVERSITY Winter Examination-2020

Subject Name: Differential Equations

Subject Code: 5SC0	IDIE1	Branch: M.Sc. (Mathematics)	
Semester: 1	Date: 09/03/2021	Time: 11:00 To 02:00	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1	a.	Attempt the Following questions Write The Bessel's differential equation.	(07) (01)
	b.	What is the degree of the differential equation $x^4y'' + (y' - x)^{1/2} = 0$?	(01)
	c.	Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$.	(01)
	d.	Write the polynomial $(3x^2 - x - 1)$ in terms of Legendre polynomials.	(02)
	e.	Solve $\frac{dy}{dx} = \frac{x-y}{x}$.	(02)
Q-2		Attempt all questions	(14)
	a.	Find the series solution of $(x - 1)y'' + xy' + y = 0$ with $y(0) = 2$, y'(0) = -1	(07)
	b.	Find the series solution of $8x^2y'' + 10xy' - (1+x)y = 0$ near $x = 0$.	(07)
0-2		Attempt all questions	(14)
Q =	a.	Find the series solution of $x^2y'' + x(x-1)y' + (1-x)y = 0$ near $x = 0$.	(1 4) (07)
	b.	State and prove Orthogonality of Legendre's polynomials.	(07)
Q-3		Attempt all questions	(14)
	a.	State and Prove Rodrigue's Formula.	(06)
	b.	In usual notation prove that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$ if $m = n$.	(06)
	c.	State Orthogonality of Bessel's function.	(02)
		OR	
Q-3		Attempt all questions	(14)
	a.	Prove that $(n + 1)P_{n+1}(x) = (2n + 1)xP_n(x) - nP_{n-1}(x)$ for all $n \ge 2$	(06)
		HUNI	Page 1 of 2

b.	Classify singularities: $x^3(x-1)y'' + 2(x-1)y' + 5xy = 0$	(05)
c.	Prove that $J_n(x)$ and $J_{-n}(x)$ are linearly dependent.	(03)

c. Prove that $J_n(x)$ and $J_{-n}(x)$ are linearly dependent.

SECTION – II

Q-4	a.	Attempt the following questions. Find $xF(1, 1, 2, x)$.	(07) (02)
	b.	The differential equation obtained from $m{z}=(x-a)^2+(y-b)^2$ by eliminating $m{a}$ and $m{b}$ is	(02)
	c.	State the condition when the given system of first order partial differential equation are compatible	(02)
	d.	Solve: $z = px + qy + p^2 + q^2$.	(01)
Q-5	_	Attempt all questions	(14)
	а. ь	Solve $z^2 = pqxy$ using Charpit's method Solve $y' = 2y - 2x^2 - 2y(0) = 2$ using Disord's method of successive	(05)
	D.	solve $y' = 2y - 2x' - 5$, $y(0) = 2$ using Ficard's method of successive approximation up to 3 approximation	(05)
	c.	Solve the partial differential equation $u_x^2 + u_y^2 + u_z^2 - 1=0$ by Jacobi's method.	(04)
		OR	
Q-5		Attempt all questions	(14)
	a.	Solve $p^2 x + q^2 y = z$ using Jacobi's method	(05)
	b.	Solve $(x^2 + y^2)p + 2xyq = (x + y)z$ Find a complete integral of $z^2 p^2 + z^2 = p^2 z = 0$ using Chamit's method	(05)
	c.	Find a complete integral $012^{-}p^{-} + q^{-} - p^{-}q = 0$ using Charpit's method.	(04)
Q-6		Attempt all questions	(14)
C	a.	Prove that: A necessary and sufficient condition that there exists between two functions $u(x, y)$ and $v(x, y)$ a relation $F(u, v) = 0$, not involving x	(08)
		and y explicitly is that $\frac{\partial(u,v)}{\partial(r,v)} = 0$	
	b.	Show that the Pfaffian differential equation $yzdx + 2xzdy - 3yxdz = 0$ is integrable and find its solution.	(06)
		OR	
Q-6		Attempt all questions	(14)
	a.	If $X \cdot curl X = 0$, where $X = (P, Q, R)$ and μ is an arbitrary differential	(05)
		function of x, y and z then prove that $\mu \dot{X} \cdot cur l\mu \dot{X} = 0$	
	b.	Show that the Pfaffian differential equation $a^2y^2z^2dx + b^2x^2z^2dy + c^2x^2y^2dz = 0$ is integrable and find its solution.	(05)
	c.	Solve $xp + yq = z$	(04)

